Why Is GIL Worse Than We Thought?

以前每当看到有人抱怨 GIL(Global Interpreter Lock),我总会告诉他们不用慌,各种场景都有对应的解决方案,比如主 IO 操作用 async,主 CPU 操作用多进程。我也一直认为,Python 的慢主要慢在“纯”执行速度,而 GIL 只不过是一个瑕疵。

然而最近我意识到,GIL 是一个比想象中严重得多的问题,因为它阻碍了程序的按需并行

什么是“按需并行”?这个词是我造的,用来描述编程中的一种常见 pattern,即把最耗时的那部分操作并行化,而程序整体仍保持单线程。通常来讲,耗时的部分往往是在遍历一个巨大的列表,并对列表中的元素做某种操作。而并行化也非常简单,只要开多个线程分别处理列表的一部分就行了。

这里我们只讨论 CPU 密集的情况。由于 GIL 的存在,开多个线程并不会让程序跑得更快(如果不是更慢的话),因此我们必须用到多进程。那么多进程是不是就能解决问题呢?并不总是,有一系列难点:

  • 进程不共享内存,计算的输入必须被传到每个工作进程里,比如列表中的元素;
  • 能被传递的东西必须 picklable,而有相当多的东西是 unpicklable 的;
  • 如果后续程序执行需要并行计算的输出,那么这些输出也得 picklable;
  • Pickle -> unpickle 操作带来了额外的性能开销。

这样一来,多进程的应用范围就大大减小了。比如我最近在 Cyberbrain 中遇到的一个问题,其中一段代码是这样的:

for event in frame.events:   
  frame_proto.events.append(_transform_event_to_proto(event))
    event_ids = _get_event_sources_uids(event, frame)
    if event_ids:
      frame_proto.tracing_result[event.uid].event_ids[:] = event_ids

这段代码遍历 frame.events,处理之后更新 frame_protoevents 数量很大,导致这部分代码成为了性能瓶颈,因此我想把它并行化。然后我就发现这是一个不可能完成的任务,为什么呢?因为 protocol buffer 对象不 pickable。这意味着,我既不能把 frame_proto 传进每个进程,也不能把 _transform_event_to_proto(event) 的结果传出来,因为它们都是 protocol buffer 对象。如果是 C++ 或者 Java,这里直接多线程就解决了(每个线程分别更新 frame_proto)。

总结一下:

  • GIL 让在大部分语言里可以用多线程解决的事必须要用多进程解决。
  • 多进程的诸多限制让它无法无缝替代多线程。即使在能替代的场景,也要做很多额外工作,以及承担序列化和反序列化带来的性能开销。

之前我们探讨了 GIL 对“并行”的阻碍,下面聊聊 GIL 对“按需”的阻碍。这是更本质的问题,却极少被人注意到。我们都知道,过早的优化是万恶之源。除了明显需要优化的场景(比如避免数据库 N+1),一般而言都是先实现,再 profile,最后优化。换句话说,类似“一个循环成了性能瓶颈”这种发现,写代码的时候一般是不知道的。假设你的程序写完了,然后需要优化某一部分,你当然希望能够不动其它代码,只修改瓶颈部分即可。这种优化的场景就非常适合多线程——因为变量是共享的,所以程序的整体完全不用动。而一旦涉及多进程,则往往需要对程序进行更大程度的修改,甚至重新设计整个架构。这样一来,“按需”优化就不存在了。这不仅导致优化困难,更给项目管理带来了不确定性,甚至可能导致延期或性能不达标。

那么,PEP 554 - 多解释器 是不是救世主呢?显然也不是。多解释器说白了就是 goroutine 的 Python 实现,问题是它限制了 channel 能传递的变量类型,quote:

Along those same lines, we will initially restrict the types that may be passed through channels to the following:

  • None
  • bytes
  • str
  • int
  • channels

所以,多解释器虽然是好的,但恐怕还是不能解决“按需并行”的问题。


注:Python 里多进程可以共享内存,然而能共享的变量类型同样有限,具体可参考:multiprocessing.shared_memory

Update: 发现一个遇到了类似问题的哥们儿,以及我的回复

comments powered by Disqus

top